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Abstract

The transmission /reflection and short-circuit line methods for measuring complex permit-
tivity and permeability of materials in waveguides and coaxial lines are examined. Equa-
tions for complex permittivity and permeability are developed from first principles. In
addition, new formulations for the determination of complex permittivity and permeabil-
ity independent of reference plane position are derived. For the one-sample transmis-
sion/reflection method and two-position short-circuit line measurements, the solutions are
unstable at frequencies corresponding to integral multiples of one-half wavelength in the
sample.  For two-sample methods the solutions are unstable for frequencies where both
samples resonate stmultaneously. Criteria are given for sample lengths to maintain stabil-
ity. An optimized solution is also preseuted for the scattering parameters. This solution
is stable over all frequencies and is capable of reducing scattering parameter data on ma-
terials with higher dielectric constant. An uncertainty analysis for the various techniques
is developed and the results are compared. The errors incurred due to the uncertainty in
scattering parameters, length measurement, and reference plane position are used as inputs
to the uncertainty models.

Key words: Calibration; coaxjal line; dielectric constant; loss factor; magnetic materials:
microwave measurements; permeameter: permeability Ineasurement; permittivity measure-
ment; reflection method; short-circuit: transmission; uncertainty; waveguide.



Chapter 1

Introduction

The goal of this report is to review and critically evaluate various transmission line measure-
ment algorithms for combined permeability and permittivity determination and to present
results and uncertainty analysis for the techniques.

There is continual demand to measure accurately the magnetic and dielectric properties
of solid materials. Over the vears there has been an abundance of methods developed for
measuring permeability and permittivity. Almost all possible perturbations or variations
of existing methods have been proposed for measurements. These techniques include free-
space methods. open-ended coaxial probe techniques, cavity resonators, full-body resonance
techniques. and transmission-line techniques. Each method has its range of applicability
and its own inherent limitations. Lor example. techniques based on cavities are accurate.
but not broadband. Nondestructive techniques. although not most accurate, allow the
maintenance of material integrity. Transmission line techniques are the simplest of the
relatively accurate wavs of measuring permeability and permittivity of materials. Trans-
mission line measurements usually are made in waveguide or coaxial lines. Measurements
are made in other tvpes of transmission lines for special applications, but for precise mea-
surements. rectangular waveguides and coaxial lines are usuvally used. The three major
problems encountered in transmission line measurements are air gaps, half-wavelength res-
onances. and overmoding.

(‘vaxial lines are broadband in the TEM mode and therefore are attractive for permit-
tivity and permeability measurements. The problem with coaxial lines, however, is that
due 1o the discoutinuity of the radial electric field. any air gap around the center conductor
degrades the measurement by introducing a large measurement uncertainty. Belhadj-Tahar
ct al. [1] have attempted to circumvent these difficulties with the development of a tech-
nique for a plug of material at the end of a coaxial line. In Belhadj-Tahar’s approach there
i« no center conductor hole. However. higher modes are excited at the transition between
the plug and the center conductor which complicates the analysis. Due to the complexity



of the method it is not apparent at this time whether this approach will replace the more
traditional single-mode models.
Transmission line techniques generally fall into the following categories:

¢ Off-resonance waveguide and coaxial line, full scattering parameter, 2-port measure-
ments.

o Off-resonance short-circuit line, 1-port measurements.
® Open-circuit techniques.

¢ Resonant transmission-line techniques.

The topic of this report will be the first two categories. We will also examine direct in-
ductance measurement, which uses permeameter techniques. The off-resonance techniques
can be broadly grouped into two categories:

¢ Point-by-point or uncorrelated-point techniques.
e Multi-point or correlated-point techniques.

The point-by-point technique is at present the most widely used reduction technique and
consists of solving the relevant scattering equations at single points. Multi-point techniques
consist of solving the nonlinear scattering equations using nonlinear least square algorithms.

Due to their relative simplicity, the off-resonance waveguide and coaxial line transmis-
sion/reflection (TR) and short-circuit line (SCL) methods are presently widely used broad-
band measurement techniques. In these methods a precisely machined sample is placed in
a section of waveguide or coaxial line and the scattering parameters are measured, prefer-
ably by an automatic network analyzer (ANA). The relevant scattering equations relate
the measured scattering parameters to the permittivity and permeability of the material.
One limitation of these techniques is that they require cutting of the sample and therefore
these techniques do not fall under the general category of nondestructive testing methods.
Another limitation is that these techniques require a small sample and therefore the res-
onance characteristics of large sheets of the material are not studied. Network analyzers
have improved over the last years to a point where broad frequency coverage and accurate
measurement of scattering parameters are possible. This broadband capability uncarths
another limitation of present algorithms, that is, the mstability of the meastirement in the
vicinity of resonant frequencies.

In this report we assume that the materials under test are isotropic, homogeneous, and
in a demagnetized state. The solutions obtajned i this report are both single-frequency
techniques and multiple frequency techniques. For the TR measurement, the system of
equations contains as variables the complex permittivity and permeability, the two reference
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plane positions, and, in some applications, the sample length. In the T/R procedure we
have more data at our disposal than in SCL measurements, since we have all four of
the scattering parameters. In SCL measurements the variables are complex permittivity
and permeability, sample length, distance from sample to short-circuit termination, and
reference plane positions. However, in most problems we know the sample length, reference
plane position, and distance from the reflector to the sample. In these cases we have four
unknown quantities (complex permittivity and permeability) and therefore require four
independent real equations to solve for these variables. These equations can be generated by
taking reflection coeflicient data at two positions in the transmission line, thus yielding the
equivalent of four real equations for the four unknown quantities. A problem encountered
in measurements. is the transformation of S-parameter measurements at the calibration
reference planes to the air-sample interface. This transformation requires knowledge of the
position of the sample in the sample holder. Information on reference plane position is
limited in many applications. The port extension and gating features of network analyzers
are of some help in determining reference plane position, but do not completely solve the
problem. Equations that are independent of reference plane position are desirable.

Most of the present transmission-line techniques [2,3,4], with some variations, are based
on the procedure developed by Nicolson and Ross [5] and Weir [6] for obtaining 2-port,
off-resonance, broadband measurements of permeability and permittivity. In the Nicolson-
Ross-Weir (NRW) procedure the equations for the scattering parameters are combined in
such a fashion that the system of equations can be decoupled. This procedure yields an
explicit expression for the permittivity and permeability as a function of the S-parameters.
These equations are not well-behaved for low-loss materials at frequencies corresponding
to integral multiples of one-half wavelength in the sample. In fact, the NRW equations are
divergent, due to large phase uncertainties for very low-loss materials at integral multiples
of one-half wavelength in the material. Many researchers avoid this problem by mea-
suring samples which are less than one-half wavelength long at the highest measurement
frequency. The advantage of the NRW approach is that it yields both permittivity and per-
meability over a large frequency band. As a special case of the NRW equations, Stuchly and
Matuszewski [7] found solutions to the scattering equations for nonmagnetic materials and
derived two explicit equations for the permittivity. Delecki and Stuchly [8] have studied the
uncertainty analysis for infinitely long samples using the bilinear and Schwarz-Christoffel
transformations. Franceschetti [9] was one of the first to perform a detailed uncertainty
analysis for TR measurements. Ligthart {10] developed an analytical method for permittiv-
ity measurements at microwave frequencies using an averaging procedure. In Ligthardt’s
study, a single-moded cylindrical waveguide was filled with a homogeneous dielectric with
a moving short-circuit termination positioned beyond the sample. This study focused pri-
marily on single-frequency measurements rather than on broadband measurements.

The short-circuit line (SCL) method was introduced by Roberts and von Hippel [11]
over fifty years ago as an accurate broadband measurement procedure. The SCL measure-



ment method uses data obtained from a short-circuit 1-port measurement to calculate the
dielectric and magnetic properties. SCL is useful when 2-port measurements are not possi-
ble, for example, in high temperature measurements [12] and remote sensing applications.
When an ANA is used, the sample is positioned in either a waveguide or coaxial line and the
reflection coeflicient is measured. The determination of the permittivity and permeability
usually proceeds by solving a transcendental equation that involves the sample length, sam-
ple position, and reflection coefficient. With modern computer systems, iterative solutions
of the resulting transcendental equations are easy to implement. However, they require an
initial guess. The resultant nonlinear equations have an infinite number of solutions due
to periodic functions. The physical solution can be determined by group delay arguments
or by measuring two samples with differing lengths. Much of the theory developed for the
SCL technique was developed for use with a slotted line. Present-day network analyzers
usually measure scattering parameters. Therefore in this report we derive equations from
a scattering approach.

The SCL method has endured over the years, and as a result there is an extensive
literature. In this report we attempt to review only the most relevant work on the subject.
Short-circuit line methods can be broadly separated into two- position techniques and two-
sample techniques. In the two-position technique 1-port scattering parameters are measured
for a sample in two different positions in the sample holder. In the two-sample technique two
samples of different lengths are machined from the same material and scattering parameters
are measured with each sample pressed against the short-circuit termination. Szendrenyi
[13] developed an algorithm for the case in which the length of one sample is precisely twice
the length of the other sample. In this special case, they found an explicit solution.

Mattar and Brodwin [14] have described a variable reactance termination technique for
permittivity determination. Maze [15] has presented an optimized-solution technique where
at each frequency scattering parameters are taken for various short-circuit termination
positions. Dakin and Work [16] developed a procedure for low-loss materials and Bowie
and Kelleher [17] presented a rapid graphical technique for solving the scattering equations.
Other authors have presented methods using measurements on two or more sample lengths
[18]. Most of the literature to date has focused on permittivity determination. In the
few works that have addressed the combined permeability and permittivity problem, many
details have been left unresolved.

Recently Chao [19] presented SCL measurements results with a slotted line and also
an uncertainty analysis for single frequency measurements. Chao found that accuracy was
reduced when the reflection coefficient is dominated by the front face cohttibution.

The SCL measurement may use either a fixed or movable short-circuit device. The
advantage of a moving short-circuit termination [2] is the possibility for making many sep-
arate measurements at a given frequency with the sample placed in either a high electric
or magnetic field region [15]. Generally, a maximum in electric field strength is advan-
tageous for permittivity measurements, whereas a maximum in magnetic field strength is




advantageous for permeability measurements.

\When only permittivity is vequired, a single measurement at a given frequency suffices,
whereas when both permeability and permittivity are to he determined. it is necessary to
carry out two independent measurements at cach frequency. There are various contribu-
tion;‘ to the uncertainties in the SCL method. These uncertainties include network analyzer
uncertainties. sample gaps. wall and reflection losses, and measurement of sample dimen-
sions. There are also uncertainties in the location of the sample reference planes and in
the distance from sample to the short-cireuit termination. The uncertainty in the network
apalyzer parameters are sometimes docuwmented by the manufacturer [3].

In this report we develop relevant equations from first principles. These equations apply
1o ANA systems. We will examine the various approaches for combined determination of
permeability and permittivity, and study the uncertainty in the measurement process. The
special case of repeated measurements o a sample of fixed length is treated in detail.
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Chapter 2

Theory for Coaxial Line and

Rectangular Waveguide

Measurements of Permittivity and

Permeability

2.1 Theory

The goal of this chapter is to present various approaches for obtaining both the perme-
ability and permittivity from transmission line scattering data. In the TR measurement,
a sample is inserted into either a waveguide or a coaxial line, and the sample is subjected
to an incident electromagnetic field [see figure 2.1]. The scattering equations are found
from an analysis of the electric field at the sample interfaces. In order to determine the
material properties from scattering data, it is necessary to understand the structure of the
electromagnetic field in waveguides. In developing the scattering equations usually only
the fundamental waveguide mode is assumed to exist. In this report we develop the theory
for multimode solutions. However, the numerical algorithms presented will be valid only

for the fundamental mode.

3
|

2.1.1 Decomposition into TE, TM, and TEM Modes

In this section we briefly review the theory of modes in transmission lines. It is possible to
decompose the fields in a waveguide at a given frequency into the complete set of TE, TM,
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Figure 2.1: A dielectric sample in a transmission line and the incident and reflected electric
field distributions in the regions I, I1, and IIL. Port 1 and port 2 denote calibration reference

plane positions.
and TEM modes. In our model at hand we assume:
o There is a propagation direction in the guide which we call Z.

o The cross-sectional area of the guide is perpendicular to z and constant throughout

the length of the guide.

Electromagnetic fields in a sourceless region satisfy

VxVxE=—jwVux H+kE, (2.1)
VxVx=jwuVex E+kH, (2.2)
where k = —jv is the wave number.

In this report we assume that there are no sources of electric and magnetic fields in the
guide (fz 0) and there no free charge build up (V- D= 0). Further we assume that the
material parameters are not spatially dependent. However, step function discontinuities
are assumed to exist between the sample and air gap. The step function discontinuities in
the equations can contribute a delta function term in derivatives. With these assumptions,
the fields satisfy homogeneous Helmholtz equations,

V2E + k*E=0, (2.3)
VIH +k*H =0 : < (2.4)
The time-dependent fields can be expanded in terms of modes
2 1 [ ~ .
E(r,t) = é—/ dwz E.(Fr,w)exp(£y.2) exp(jwt) , (2.5)
T J-0 n
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1 gy = ,
H(Ft) = E/wo dw " H,(7r,w) exp(£y,z) exp(jwt) , (2.6)

where 77 is a transverse vector, E,, H, are the amplitudes of the modes, and
| winger 27 \?
e (.

=) - (E) 25

where 7,,7, are the propagation constants in vacuum and material, respectively. Also
J = V-1, cyae and Ciab are the speed of light in vacuum and laboratory, w is the angular
frequency, A, is the cutoff wavelength of the nth mode, ¢, and Ko are the permittivity and
permeability of vacuum, €p and u} are the complex permittivity and permeability relative
to a vacuum. :

Since these modes satisfy a Sturm-Liouville problem, we know that the totality of these
waves forms a complete set of functions, and therefore an eigenfunction expansion property
exists for this system. The Laplacian separates in the coordinate systems used in this
report, and therefore the fields can be separated into transverse (T) and longitudinal (z)
components:

E=Er+E,7, (2.9)
H=Hr+H,7. (2.10)

The component E, is the generator of the TM mode (see Appendix) and the H, cbmponent
is the generator of the TE mode. Since the TE, TM, and TEM modes form a complete set
of functions, we can expand the transverse Fourier-transformed fields as

Er(F,w) =

Z {E:TE exp(—%z) + E g eXP(’YnZ) }ET(TE)(FT)

n=1

+ D AE 0 exp(=122) + EZpay exp(1n2)} Ereran (7r)
n=1
N-1 - ..
+ Z {E:TEM exp(—‘rnZ) + E;TEM exp('Ynz)}ET(TEM)(FT) ) (2-11)

n=1




n=1 ZnTE
oo 1 i ) ) ]
+ Z Z T}\/[{E:TM exp(“’7n~) EnT]W e\(p('ynz)}(z X ET(TM)(TT))
n=1 n
N-1 p ) ) )
’ ;{E:TEM exp(—vnz) = Exrpn eXp(122)}H(E X Eraem)(rr)) (212
n=1

where N is the number of disjoint conductors and (+) denotes forward and backward
traveling waves. The coefficients E, depend on the transverse components, and the wave

impedances are

Zra = (2.13)
Jwe
Zpp = 8 (2.14)

Although the sums for the TE and the TM waves in eqs (3.11) and (2.12) approach oo,
in many problems of practical interest, some of the coefficients in the sums vanish. Two
or more modes may have the same eigenvalue; the eigenvectors in these cases are called

degenerate.
In order to solve eq (2.3) it is expeditious to break up the Laplacian into transverse and

longitudinal components,

-

S = . VE .
ViE =ViE + pyak (2.15)
where . .
*E = ,
a—ZT:A,ZE , (2.16)
and the transverse Laplacian satisfies by eq (2.3)
VIE = —(k*+ Y E = —k2E (2.17)

where k. is the cutoff wavenumber. If € has a dependence on transverse coordinates in
terms of a step discontinuity, then v also has a transverse dependence. In Appendix A, the
details of the derivations of the fields are reviewed.

2.1.2 Imperfect Sample Geometry

In the case of perfect or near perfect samples and sample holders, v is independent of the
transverse coordinates and therefore different eigenfunctions for the transverse components

9




in the air and sample regions possess an orthogonality condition [see Appendix A]. In such
cases 1t is possible to match mode by mode, and the coefficients are decoupled. However,
when samples and sample holder are not perfectly formed or are slightly inhomogeneous,
both u and ¢ have a weak dependence on the transverse coordinates of the guide and
therefore the different transverse cigenfunctions in the sample are not orthogonal to the
transverse eigenfunctions in the air section. The modes of imperfect samples cannot be
separated and matched mode by mode. The imperfections in the sample generate evanes-
cent waves at the sample-material interface. These modes may propagate in the sample,
but they decay exponentially outside of the sample.

For an imperfect sample, the fields in the regions I, II, and III are found from an
analysis of the electric field at the sample interfaces. We assume that the incident electric
field is the TE)y mode in rectangular waveguide and TEM in coaxial line. As the wave
propagates from the air-filled region into the sample, some of the energy carried in the
wave will convert into higher order modes. However, it is necessary to consider only the
transverse components of the fields when matching boundary conditions. In the following
we assume that gaps or other imperfections can exist in and around the sample. We further
assume that the imperfections are such that the Laplacian can be separated into transverse
and longitudinal components. If the imperfections are azimuthally symmetric, then only
the H, magnetic field component is assumed to exist. If we assume the vector component
of the normalized electric fields I-,. Eypoand, Erptoin the regions [, II, and III, we can
write for V modes

N
Er= exp(=7012) +Siexp(va12) + Y Ci(Zr) exp(1ei2)] (2.18)
— i=2 —
incident wave evanescent
N
Erp =Y [DiZr) expl=vmuz) + Ei(Zr) exp(ymiz)] (2.19)
1=1
N
Enip = S exp(=val= = L))+ 3 [Fi(Zr) exp(~vo(z — L))] (2.20)
transmitted wave = evanescent

where C,, D,, E;, F, are the modal coeflicients, which may depend on the transverse
coordinates. Also 7., vm, are the propagation constants of the ith mode in vacuum and
material respectively. We assume that we are operating the waveguide at such a frequency
that only the fundamental mode is a propagating mode in the air sectjon of the guide. The
other modes are evanescent in the air section of the guide, but may be propagating in the
material-filled section. There may be additional modes produced by mode conversion for

'"TEM mode in a coaxial line or the TE1y mode in a waveguide (with a time dependence of exp(jwt)

suppressed)
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her components of the electric field, but these are not necessary for specification of

the ot nt
the boundary conditions.
In general. the amplitudes in eqs (2.18) to (2.20) are functions of the transverse coor-

dinates. To find the coeflicients, it is necessary to match tangential electric and magnetic
fields at the interfaces and integrate over the cross- sectional area. Since different transverse
cjgenfunctions in the air are not orthogonal to transverse eigenfunctions in the sample vye
cannot separate a particular mode in the sample and match it to the analogous mode in

the air. The tangential electric field matching yields

N
bk + (1 = du ey = Z(Adej + Aiel (2.21)
J=1
N
[dk eXP(—%nkL) + € eXP('Yka) = Z AJl‘fJ ’ (222)
=1

where &;, is the Kronecker delta and c, e, and f are the integrated coefficients, V is the
number of modes, and Ay, is the matrix of the coefficients of the integrated transverse
cigenfunctions. The transverse component of the magnetic field can be obtained from
Maxwell's equations using eqs (2.21) and (2.22). If we match the tangential magnetic field
components and integrate over the transverse variables we have

N
Yok Y, .
{-191&-1 + 2% — bilek] = ) —[=Ax,d; + Axje;] (2.23)
Ko Ko oK
1\"

Tmk Tmk Yo
[—di == exp(— i L) + e exp(ymil) = = 3 Auf,~2 (2.24)

p H = Ko

where L is the sample length and

Lyw =L+ L+ L,y. (2.25)

These boundary conditions yield a linear system of equations for the coefficients. Various
cutofl frequencies and operating frequencies are given in tables 2.1 and 2.2.

The difficulties in solving the full inode problem in eqs (2.21) to (2.24) is that the coef-
ficients of the matrix Ay, are not generally known precisely unless the complete boundary
value problem is solved for each sample. These coefficients are known only for simple,
well-defined geometries and not for samples with unknown air gaps or complicated inho-
mogeneities.




Table 2.1: Cutoff frequencies for TE,, mode in rectangular waveguide.

EIA WR  Band Cutoff frequency(GHz)
650 L 0.908
430 W% 1.372
284 S 2.078
187 C 3.152
90 X 6.557
42 K 14.047
22 Q 26.342

Table 2.2: Rectangular waveguide dimensions and operating frequencies in air.

' EIA WR Band « (cm) b(cm) TE}, Operating frequency(GHz)
650 L 16.510 8.255 1.12 - 1.70
430 \4% 10.922  5.461 1.70 - 2.60
284 S 7.710 3.403 2.60 - 3.95
187 C L7500 2214 3.95 - 5.85
90 X 2,286 1.016 8.20 - 12.40
42 K 1.067  0.432 18.0 - 26.5
22 Q 0.569  0.284 33.0.- 50.0 .




1.3 Perfect Sample in Waveguide

2

Ay a special case of the formalism developed in the previous section we consider a perfect
sample 1 a perfect waveguide as indicated in figure 2.1. In this case no mode conversion
,ccurs because the eigenfunctions in the air and sample regions are orthogonal with respect
(o cross-sectional coordinates. Therefore the modes may be decoupled and the evanescent
modes are not of concern. This is a special case of eqs (2.21) to (2.25). In this case we
heed to be concerned only with the fundamental mode in the guide. The electric fields in
the sample region = € (0. L) for a coaxial line with a matched load and with the radial
dependence written explicitly are

, 1 :
Ey = —lexp(—3,2) + Stexp(r.2)] - (2.26)
.
. L, . 9
k= :( lexpt=m12) 4 Cyexp(12)] (2.27)
- Lo ' 9 9
Eppr = —{Saexp(—=.0z = L))] . (2.28)

When these equations are integrated over the cross-sectional surface area, the radial de-
pendence is the same for each region of the waveguide.

The constants in the field equations are again determined from the boundary conditions.
The boundary condition on the electric field is the continuity of the tangential component
at the interfaces. The tangential component can be calculated from Maxwell’s equations
given an electric field with only a radial component. The higher modes in egs (2.18) to
(2.20) are evanescent in the air-filled section of the guide. TM modes can be treated
similarlv.  The details of the boundary matching for the TE), case are described in a
previous report on dielectric materials [26,27]. The boundary condition for the magnetic
field requires the additional assumption that no surface currents are generated. If this
condition holds. then the tangential component of the magnetic field is continuous across
the interface. The tangential component can be calculated from Maxwell’s equations for
an electric tield with onhv a radial component. For a 2-port device the expressions for the
micastired scattering parameters are obtained by solving eqs (2.13) through {2.20) subject
to the bonndary conditions. We assnme that S, = Sy The explicit expressions for a
saniple ina waveguide a distance Ly from the port-1 reference plane to the sample front
face and L, from the sample back lace to the port-2 calibration plane are related. The
S-patameters measured by the device reference planes arve related to the 5; parameters at

the sample face 87 Ly [26]

(2.29)
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where



oo ( exp(gj¢1) expé)jqﬁz) ) , (2.30)

and ¢; = jyoL; and ¢ = jyoL,. The S-parameters are defined in terms of the reflection
coefficient I'" and transmission coeficient z by:

r'a - 22
Sn = B [T(_F%J , (2.31)

ra- 2?2
Sy = R [1(—_1%22] , (2.32)

2(1 —T?)
S = R1R; [WJ ’ (2.33)
where

Ry = exp(—v,L,) , (2.34)
Ry = exp(—+,L,) , (2.35)

are the respective reference plane transformations. Equations (2.31) through (2.33) are
not new and are derived in detail elsewhere [5,28]. We also have an expression for the
transmission coefficient Z:

Z = exp(—vL) . (2.36)
We define a reflection coefficient by
B _ o
r=2_m (2.37)
2

For coaxial line the cutoff frequency approaches 0, (we — 0) and therefore I' reduces to

-
Cvac KR _ 1
L
Clab €r
1

r=22eVee (2.38)

ﬂ.

Cvec [ZR -+
-
Clab tn

Additionally, S5; for the empty sample holder is

Sn = RiR, exp(—yoL,) . (2.39)




For nonmagnetic materials, eqs (2.31), (2.32), (2.33) contain €h, €k, L, and L,, and
the reference plane transformations R;, R, as unknown quantities. Since the equations for
G, and Sz are theoretically equivalent for isotropic non-gyromagnetic materials, we have
four complex equations, egs (2.31), (2.32), (2.33), (2.39), plus the equation for the length
of the air line (2.25), or equivalently, nine real equations for the six unknowns. However,
in many applications we know the sample length to high accuracy. For magnetic materials
we have eight unknowns. However, we have frequency data for each measurement. Since
the lengths are independent of frequency we have an over-determined system of equations.
This abundance of information will be exploited in the next chapter.

2.2 Permeability and Permittivity Calculation

2.2.1 Nicolson-Ross-Weir Solutions (NRW)

Nicolson and Ross [5], and Weir [6] combined the equations for Sy; and S,; and discovered a
formula for the permittivity and permeability. Their procedure works well at off-resonance
where the sample length is not a multiple of one-half wavelength in the material. Near
resonance, however, the solution completely breaks down. In the NRW algorithm the

reflection coefficient

F,=X+ VY71 (2.40)

is given explicitly in terms of the scattering parameters where

1 - W,

X=——, 2.41
and

Vi=Sn+ 5, (2.42)

Vy=Su —Si. (2.43)

Note that in the Nicolson-Ross solution the S-parameters must be rotated to the plane of
the sample faces in order for the correct group delay to be calculated. The correct root
is chosen in eq (2.40) by requiring |[';| < 1. The transmission coefficient Zy for the NRW

procedure is given by

Su+Sa-n

= . 2.44
: 1= (Si+ Sa)Thy ( )

-

15



If we define
1 1 1

— = —))? 2.4
el In{ 7 2 (2.45)
then we can solve for the permeability
. 140
Wy = 11 = (2.46)
(1-Ty)A X%

where A is the free space wavelength and A, is the cutoff wavelength. The permittivity is
given by

A2 1 1,
. _ I 2.47
€k N;?[/\z Sy izl (2.47)

Equation (2.45) has an infinite number of roots for magnetic materials, since the log-
arithm of a complex number is multi-valued. In order to pick out the correct root it is
necessary to compare the measured group delay to the calculated group delay. The calcu-
lated group delay is related to the change of the wave number k with respect to the angular
frequency

Tealc.group

J (_‘Rlu’sz 1 (248)
€ + _(Eﬁﬂl
_ LR ST L. (2.49)
2 el 1 _
c? A2
The measured group delay is
1 d
¢ (2.50)

Tmeas.group — 5;3 ’

where ¢ is the phase of Z;. To determine the correct root, the calculated group delays
are found from eq (2.49) for various values of n in the logarithm term in eq (2.45), where
InZ = In|Z| + j(0 + 27n), where n = 0,£1,4£2,.... The calculated and measured group
delays are compared to yield the correct value of n. Many researchers think of the NRW
solution as an explicit solution: however, due to the phase ambiguity; it is not in the strict
sense. Where there is no loss in the sample under test, the NRW solution is divergent at
integral multiples of one-half wavelength in the sample. This occurs because the phase of
511 cannot be accurately measured for small |S},]. Also in this limit both of the scattering
equations reduce to the relation Z? — 1, which is only a relation for the phase velocity and
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and puj are not separable. This singular behavior can be minimized

s solutions for eg . . .
sl ity is known a prior. as shown in previous work performed by

here permeab

[26]. : :
tic materials there are other methods for solution of the S-parameter equa-

ction we will describe various solution procedures.
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9.2.2 2-Port golution Where Position is Determined Solely by

Lairline and L

‘Jer to obtain both the permittivity and the permeability frem the S-parameter rela-
l?l UI,(; s necessary to have at least two independent measurements. These independent
:,]::‘[;z;ll-én;ents Coulgl be two samples of different lengths, it could be a full 2-port measure-
nent. or it could be a 1-port SCL measurement of the sample in two different positions in
he line. In the full S-parameter solution we solve equations that are invariant to reference

planes for ¢ and p. A set of equations for single-sample magnetic measurements 1s

-2z
S1Sa — S S = exp{=270(Lair — L)}—l—_—ﬁ? . (2.51)
L Z(1 —-T%) _
(Sy1 + Si2)/2 = exp{—0lLay — L)}TTFZ—Z—Z (2.52)

Iquation (2.51) is the determinant of the scattering matrix.

Iterative Solution
Equations (2.51) and (2.52) can be solved iterativelyv or by a technique similar to the NRW
technique. In an iterative approach. Newton's numerical method for root determination

works quite well. To solve the system it is best to separate the system into four real
equations. The iterative solution works well if good initial guesses are available.

Explicit Solution

It is also possible to obtain an explicit solution to eqs (2.51) and (2.52). Let 2 = (Sa1512 —
S11Sy) exp{2vo( Loy — L)} and y = {( Sy + 5120/ 2} exp{ro( Lair — L)}. then it can be shown
that the physical roots for the transmission cocflicient are

el { PSRN ,
Z = r + <i_+__> —1. (:
2y \l 2

(8%}
(W11
o
~—




The reflection coefficient is

A
= —_ 2.54)
Fo== r/7? -1 (2.54)

The ambiguity in the plus-or-minus sign in eq (2.54) can be resolved by considering the
reflection coefficient calculated from S;; alone

- a(Z? = 1) £ /0?21 + 22228, - a?) + a? 255
2T 28,22 ’ 2:99)

where a = exp (—2v9L,). The correct root for I'; is picked by requiring |I'3] < 1. Note
that an estimate of L, is needed in eq (2.55). If I', is compared with I'; then the plus-
or-minus sign ambiguity in eq (2.54) can be resolved and therefore T, is determined. The
permeability and permittivity are then

14T, 1
Wy = - “_er%—L(ln Z +2xjn) | (2.56)
. c? 27 2 | A 2, . o
eR:JQ—(T) —F(Ix‘12+27r]71) /1y (2.57)

The correct value of n is picked using the group delay comparison as described in the
Nicolson-Ross-Weir technique. At low frequencies the correct roots are more easily identi-
fied since they are more widely spaced.

2.2.3 Two Samples of Different Length

Solutions for the material parameters exist when scattering parameters on two samples of
differing lengths are measured. Let us consider two samples, one of length L and one of
length oy L as indicated in figure 2.2.

For independent measurements on two samples where |S21] > —50d B over the frequency
band of interest we use only S3; measurements. The measurements obtained on the two
samples are designated as S211) and Szi(y) for first and second measurements:

) Z(1 -T?)
Sa) = exp{—=7o( Loy — L”—lTZZT , (2.58)
Z° (] -T2 N
S22y = exp{~0(Lair — OlL)}ﬁmTj (2.59)
where
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Figure 2.2: A dielectric sample in a transmission line for two sample magnetic measurements

and
7% =exp(—an L) . (2.61)
The reflection coefficient is given by eq (2.37). Equations (2.58) and (2.59) can be solved
iteratively for ex and pg.
This solution is unstable for low-loss materials at certain frequencies if the sample
lengths. L and a;L, are related so that both materials resonate at a certain frequency
simultaneously. Also with this technique two-sample length measurements are required,

and this increases the uncertainty.

2.3 Measurement Results

The measurement consists of inserting a well-machined sample into a coaxial line or waveg-
uide and measuring the scattering parameters. For waveguide measurements it is important
to have a section of waveguide of length about two free space wavelengths between the coax-
to waveguide adapter and the sample holder. This acts as a mode filter for filtering out
higher evanescent modes. There are many roots to the equations for the permeability and
permittivity and caution must be exercised when selecting out the correct root. At lower
frequencies (< 1 GHz) the roots are usually more widely spaced and therefore root selec-
tion is simplified. Another approach to root selection is the measurement of two samples
of differing lengths where the vesults compared to determine the correct root.
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Figure 2.3: ¢}, of a loaded polyvmer in a X-band waveguide with the full S-parameter iterative
technique.

2.3.1 Measurements without Gap Corrections

Various measurements have been made in waveguide and coaxial line. Some of the results
of these measurements are reported in figures 2.3 through 2.1 for the full S-parameter
technique and in figures 2.15 and 2.16 for the two-sample length method. The measurements
reported in this section are not corrected for gaps around the sample. The effect of the air
gaps is to measure values of the material parameters that are lower than the actual values.

[n the next section we will discuss wavs of mitigating the cffects of air gaps.

2.3.2 Effects of Gaps between Sample and Waveguide

Gaps between the sample holder and sample cither may be corrected with the formulas
given in the appendix or a conducting paste can he applied to the external surfaces of the
sample that are in contact with the sample holder before insertion into the sample holder.
In fignre 2.17 we show a measurcment of a nickel-zine ferrite with and without a gap-filling
grease. The dielectric loss factor is increased slightly by the gap filling. We suspect that
part of this increase is due to the finite conductivity of the conducting grease.
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Figure 2.7: €g of a ferrite in a X-band waveguide with the full S-parameter iterative tech-
nique.
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Figure 2.8: pota ferrite in a X-band waveguide with the full S-parameter iterative tech-

nique.
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Figure 2.9: pj of a ferrite in a X-band waveguide with the full S-parameter iterative

technique.
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Figure 2.10: 4% of a ferrite in a X-band waveguide with the full S-parameter iterative
technique.
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Figure 2.12: € of a loaded polymer in coaxial line the full S-parameter iterative technique.
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Figure 2.14: % of a loaded polymer in coaxial line with the full S-parameter iterative

technique.
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Figure 2.15: €j of a loaded polymer in a X-band waveguide with TR method for two sample
technique, for three different samples.
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Figure 2.16: ptr of a loaded polymer in a X-band waveguide with TR method for two
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Figure 2.17: The dielectric and magnetic parameters of a nickel-zinc ferrite in a coaxial line
from 1 MHz to 10 GHz with the full S-parameter iterative technique.
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2.4 Permeameter

In the past permeameters have been used for high permeability materials. Rasmussen [29],
Hoer [30], Powell [31], and Goldfarb [32] have all described various permeameter setups.
In this section we wish to review the theory behind the permeameter.

If a toroidal sample is inserted into an azimuthal magnetic field region, the inductance
is changed. If the inductance of the empty sample holder is compared to the inductance of
the filled holder then it is possible to extract the complex permeability of the material.

Consider a toroid of inner diameter a and outer diameter b and height h. The material
contributes an inductance of [32]

p'hln(b/a)
== 717 2.62
L, = #H0) (2.62)
and the inductance of the air space is
pohln(b/a)
Ly="——7—. 2.
¢ 27 (2:63)

The net change in the sample inductance when the sample is inserted into the holder is

AL=1L,~L,, (2.64)
and therefore
2rAL
=14 —. .
PR =t T Tn(b/a) (265)

The magnetic loss may be obtained from consideration of the core loss AR or resistance

AR

KR o hInGEfa) (200

These equations are a special case of the scattering equations for short-circuit line (see
eq (4.7)) in the limit as w — 0 and through use of relation Hy = E,/Z.
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